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A THEORETICAL INVESTIGATION OF THE ROLLING OSCILLATIONS OF AN AIRPLANE
WITH AILERONS FREE

By Doris CorEN

SUMMARY

An analysis is made of the stability of an airplane with
ailerons free, with particular attention to the motions when the

atlerons have a tendency to float against the wind. The present’

analysis supersedes the aileron investigation contained in
NACA Report No. 709. The equations of motion are first
written to include yawing and sideslipping, and it i8 demon-~
sirated that the principal effects of freeing the ailerons can be
determined without regard to these motions. If the ailerons
tend to float against the wind and have a high degree of aerody-
namic balance, rolling oscillations, in addition to the mormal
lateral oscillations, are likely to occur. On the basis of the
equations including only the rolling motion and the aileron
deflection, formulas are derived for the stability and damping
of the rolling oscillations in terms of the hinge-moment derivatives
and other characteristics of the ailerons and airplane. Charts
are also presented showing the oscillatory regions and stability
boundaries for a fictitious airplane of conventional proportions.
The effects of friction in the control system are investigated and
discussed.

If the ailerons tend to trail with the wind, the condition for
stable variation of stick force with aileron deflection is found to
determine the amount of aerodynamic balance that may be used.
If the ailerons tend to float against the wind, the period and
damping of the rolling oscillations are found to be satisfactory
(in @ mass-balanced system) 8o long as the restoring moment is
not completely balanced out. Unbalanced mass behind' the
hinge, however, has an unfavorable effect on the damping of the
oscillations and so shifts the boundary that close aerodynamic
balance may not be attainable. It is found that friction may
retard somewhat the damping of the aileron-free oscillations bug
in no case causes undamped oscillations if the ailerons are
otherwise stable.

INTRODUCTION

The problem of the stability of an airplane with ailerons
free has been treated in reference 1 as an adjunct to the
investigation of elevator- and rudder-free motions. More
recent developments in aileron design have led to an increased
interest in the possible effects of positive floating tendency,
that is, a tendency for the ailerons to move downward as
the angle of attack is increased. Oscillations observed in
flight have been thought to arise from this condition and
have suggested the present more thorough investigation,
in which particular attention is given to the motions when

the floating tendency is positive. The present analysis is
intended to supersede completely the aileron investigation
of reference 1.

In the present analysis the equations of motion are first
written to include all lateral degrees of freedom—side-
slipping, yawing, and rolling—and movement of the ailerons.
A numerical example is then used to show that the important
information concerning the motions can be obtained by
investigation of the rolling and aileron motions alone,
although a somewhat modified interpretation of the results
may be indicated. Because most ailerons are mass-balanced
about the hinge axis to avoid flutter, the mass-moment
parameter representing the effect of rolling acceleration
on the aileron position is also omitted from the bulk of the
analysis. With these simplifications it then becomes
possible to derive, in terms of the remaining aileron and
airplane characteristics, general formulas for the rate of
damping of the oscillations, where oscillations exist, and
equations expressing the conditions for stability. The
hinge-moment characteristics of the ailerons will be con-
sidered the principal variables.

Charts will be presented to show numerical results in
certain cases. In these examples the effects of the mass
characteristics of the ailerons, which cannot readily be
expressed in general formulas, will be investigated. A
discussion of the effect of friction in the control system will
also be included.

SYMBOLS
“Airplane characteristics:
mass of airplane

wing aspect ratio (5%/S)
wing dihedral, radians
Aileron characteristics:
m, mass of aileron system

k., effective radius of gyration of aileron system about
hinge axis

m

kx radius of gyration of airplane about airplane X-axis
ks radius of gyration of airplane about airplane Z-axis
b wing span

¢ mean wing chord

S wing area

A

A

z distance from aileron center of gravity to hinge axis

(positive when center of gravity is behind hinge)
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y distance from aileron center of gravity to plane of

symmetry of airplane

! spanwise distance used in computing O to include the

Y
. v Ohw
effect of rolling; thus’W‘Z:—C_’z:
b, span of ailerons
T, root-mean-square aileron chord
Symbols used in describing motions (all angles are in
radians):
acceleration of gravity
density of air

dynamic pressure (% pV’)

steady-flight speed
distance along flight path
distance along flight path traversed during one oscilla-

"d“ﬁ bQ"a'Q

. . (211')
tion, semispans Y

sideslip velocity (positive to right)

angle of attack of wing

effective angle of attack due to flap deflection

angle of sideslip (positive when sideslipping to right)

angle of yaw (positive when nose turns to right)

angle of roll (positive when right wing is down)

total angle of aileron deflection (positive with right wing
down)

rolling velocity (d¢/dt)

yawing velocity (dy/dt)

side force (positive to right)

yawing moment

rolling moment in rolling-moment coefficient; lift in lift
coefficient

hinge moment

Nondimensional quantities:

o

PSSR R

N BZEsS

© =S—,7%-b airplane density parameter
Ix= S’ T m airplane mioment of inertia about X-axis
I,= =355 ( 52 airplane moment of inertia about Z—a_s‘ns
me ke \° . . . L
I“=p5a_"7)— 31_2-> aileron moment of inertia about hinge axis
£ _be) ?d’ mass-moment parameter, hinge axis. {Non-
96a dimensional expression for effect.of inertia
of aileron system in causing aileron deflec-
tion when airplave is accelerated in roll )
For ailerons alone, b_%% —mM, 672 B V3
t, ratio of flap chord to airfoil chord at a given section
d b2 d

dlﬂ'erentlal operator.

D¢=:?%

V& In particular,

O

6
008/ 4
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A oot of stability equation

—a real part of \, proportional to rate of damping of motions

n  magnitude of imaginary part of A, proportional to fre-
quency of oscillations

C.» yawing-moment coefficient (1‘%)
C; rolling-moment coefficient (q—5’77>
. . H
C, hinge-moment coefficient (&ETIJ
Cu 1ift coofficient (%)
L coemaclen q—S,

Cy side-force coefficient (q—g)

Subscripts attached to moment coefficients indicate the
partial derivative of the coefficient with respect to the
quantity denoted by the subscript. In particular,

Cu= bacg" hinge-moment coefficient due to unit aileron deflec-
tion, or restoring tendency. Restoring tendency
is posit.ive when surface is overbalanced

Ch. =%%‘ hinge-moment coefficient due to unit change in

local angle of attack, or floating tendency.
Floating tendency is positive when surface {loats
against the relative wind

0”1"—_175 hinge-moment coefficient due to unit rate of
deflection of ailerons (generally the aerodynarmc
damping, but may include viscous friction in
the control system)

oC

Cu =5

~=! rolling ‘moment due to unit aileron deflection, or
effectiveness of the ailerons in producing roll

20,
008 /4

(65,

part of additional lift due to angular velocity of flap
caused by acceleration of potential flow (— I of
reference 2)

part of additional lift due to angular velocity of
flap caused by effective increase in camber

( of reference 2)

part of hinge moment due to angular velocity of
ﬂap caused by acceleration of potential flow

( p t , !, where T,and T}, are given in reference 2>

00,

305 ), part of hinge moment due to angular velocity of

flap caused by effective increase in camber

18111:’ ;Z"f: where T}, and T}; are given in reference 2)
!

The variable D¢ is held constant in taking the partial
derivative with respect to § or D§, which is equivalent to
holding « constant.

4y
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The following symbols are adopted because of common
usage:

O,p——g-'— aerodynamic damping of the airplane in roll
2V
bO, 00,
: 01
T o rh
T3 % d 5
ANALYSIS

EQUATIONS OF MOTION

The general equations of lateral motion with ailerons free,
coupling the rolling motion of the airplane with the yawing
and sideslipping motions and with the movements of the
ailerons following & small disturbance, are as follows:

oo+ Vi)~ 35 — gmg=0 ®

N 2N _ON :dN_
mhs? $— 'Pw—ﬁgﬂ——(bg—ﬁ % 05 (2)
mhet b= 22— Go—d I G=0 @)

2 s QH_sOH, - OH
makdi—p 2 ﬂbﬁ¢¢ 3 +¢¢0(4>

where the dot over a quantity denotes its derivative with
respect to time.

TFor small angles of sideslip, v=8V. 'Dividing equation (1)
by ¢S, equations (2) and (3) by ¢Sb, equation (4) by gc.*be,

and introducing the nondimensional operator D=—d8——

yields the following nondimensional equations: ’ <b/2)
(4uD— Oy;) 8— Crp+4p D=0

— ChpyB—On, D~ @I:D— Gy, YD— (Cypy D+ Cip)5=0

—OyB+ @IxD—C4) Dp—C, DY— (CrpsD+ Cr)s=0 | (5)

— ChgB+-(—£D—Cipy) Dé— O, DY
+ @I D3 — C D — Chp)5=0

s

If solutions are assumed to have the form Ce¢ 2, the
exponent N must satisfy the stability equation in D obtained
by setting the determinant composed of the coefficients of
B8, ¢, Dy, and & equal to zero. In the general case described
by equations (5), the stability equation is of the sixth degree
in » and the six roots may indicate motions composed of as
many as three oscillatory components. By means of
simplifying assumptions justified by the examination of
numerical examples, the stability equation will eventually
be reduced to a cubic.

PRELIMINARY CALCULATIONS

It is first proposed to simplify the analysis by neglecting
the coupling between the rolling motion and the yawing
and sideslipping motions. In order to test the validity of
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such a treatment, two sets of calculations have been made
for a specific case, one set including the cross—coupling, and
one set considering only the rolling and aileron motions.

Numerical values assumed.—The airplane characteristics
agsumed are given in table I. A lift coefficient of 1.0 was
chosen to magnify any differences between the two results.
The stability derivatives were obtained, with the exception
of C,,, from table I of reference 3. The value of C;, was
taken from reference 4, on the assumption of a 2:1 tapered
wing of aspect ratio 6. The mass characteristics are
intended to be representative of a conventional pursuit-
type airplane.

TABLE I.—AIRPLANE CHARACTERISTICS
Wing characteristics:

Taper ratio. oo e 2:1
A 6
e a.ng e, A, degrees__ . __ .- 5
Lift-curve slope, C'La ________________________________ 4.3
Mass characteristics:
________________________________________________ 12. 5
b
kx D R SRR 0.3
L g e e e —————————— 1.5
Stability derivatives
o 0. 067
o A —0. 065
G e —0. 109
Clpm e —0. 088
e —0. 450
O e e e 0. 250
O gmcmmmm e e —0.41

The aileron characteristics assumed are for 15-percent-
chord ailerons covering the outer 40 percent,of the wing span.
The values of the derivatives are listed in table II. The
ailerons were assumed to be mass-balanced; consequently,
£=0. The moment of inertia of the ailerons was also taken
equal to zero. (The validity of a comparison made on the
basis of zero moment of inertia will be checked in a subse-
quent section.) The hinge-moment parameters C,, and C,
were retained as the principal variables.

TABLE II.—AJLERON CHARACTERISTICS

Valae
D%lﬂv:a ) Explanation 15-percent- | 30-percent-
chord chord
ailerons allerons
[o; — From figare 16 of reference 5, with k—ba'obtai.ned —0.158 —0.158
from empirical carve of figure 1 herein
CLp,;
Cipg--a-| Cipy= _'ZXWB (€135 § —0.013 —0.023
AH
Cugenmnn C.;-—C,,Xvs—g—l-' (Reference 6, p. 107).. 0.0218 0.0218
iy x2Sk 6, 0.002 0.002
Capy---| Capy=—Cip; X7 (Referencs 5, p. 107).....
Cip,-- .| Forfrictionlesssystem. (See fig. 1 for formula)..| ~0.110 —0.220
Cipy--—- Considered negligible.. .o corcmmmeeeeaeeee 0 0
Cipg---| Cipg=gss Cs, Fromanunpublishedenalysis | 0.66Ch, | 0.72Ch,
correlating wind-tunnel and flight-test data.
Cigeuec| Cag=Ci A 0.0873 Cs, 0.0873 G,
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F1aURE 1.— Theoretical formulas and cturves for determining the aerodynamic effects of angular velocity of the aflerons, derived from the equations of reforence 2 for unbalanced flaps.
Empirical curve for 3.3 from wind-tunne! tests.
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Nature of the motions, four degrees of freedom,—The
composition of the motions, as indicated by the roots of the
stability equation for various combinations of C,, and
Chs, i8 described in figure 2. With I, and ¢ equal to zero, the
stability equation for this figure is a quintic and there
are, therefore, five roots to be accounted for. It is possible
to consider separately one real root; this root passes through
zero along a line designated in figure 2 as the spiral divergence
boundary. In the region around the positive C,,-axis the
remaining four roots form two complex pairs, indicating
that the motions have two oscillatory components. Along
the long-dashed curve one oscillation disintegrates into two
aperiodic modes, divergent or convergent accordingly as the
oscillations are stable or unstable; at all values of Cj, and
C, outside this curve the motion is composed of one oscilla-
tory mode, which is almost always stable, and three non-
oscillatory components. Inside the curve, the two oscillatory
components are stable so long as C, is negative. As C,
becomes positive, instability sets in, as indicated by the
oscillatory stability boundary. In general, only one mode
becomes unstable; the same oscillation breaks down into
two aperiodic modes at a slightly larger value of Ch. In
o small region (AB in fig. 2) defined by the intersection
of the two branches of the boundary, both modes are un-
stable, This detail and others occurring outside the stable

Oscillatory srobility One stable,one unstable

|‘ boundary-}..| osclliatory mode
5 = << ]
— NN
= D U
4 :
One ais Two \
- osclllatory _J‘:_ stable
 mode (stoble) /‘;?sclllahons R \]
- |
.3
//Pﬂ N~ ~ \
. LT —] Ropid
L /’ Wq divergence
2ropiral divergence %/
I boundory ¥
Cher 1 :;/ S~

o e e W AR B Y A N A S N
_— S/ 7 i
varouncs 2 I8 \\&\\\Q
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0/" —] < 0 \¥ \\
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//{§§’ ARapid divetgerN\\

-., ~]

-c =/ ag 4 2

Chs

FIouRE 2—Character and stabillty of the components of the motions found by solution of
the equations before the elimination of sideslipping and yawing. (8hading Indicates the
unstable region.) Afleron chord, 15-percent alrfoll chord; £=0; I.=0; dihedral angle, 5°;
Cp=1.0,
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F1GURE 3.—Rate of divergance, as indicated by the value of the positive real roots of the
stabflity equation. Afleron chord, 15-percent airfoll chord; £=0; I,=0; dihedral angle, 5°;
Cr=1.0.

region, or near the boundary, are not considered of any
practical importance; they are mentioned in order to answer
questions that might otherwise be suggested by inspection
of the figure.

Rate of divergence, four degrees of freedom.—Inasmuch
as figure 2 indicates that the motions will be unstable for
most combinations of values of Oy, and Cj, it seems advisable
first to examine the nature of the divergent instability, which
appears almost unavoidable. The condition for neutral
stability (zero root) is that the constant term of the stability
equation vanish; that is,

Oka (01301;,-_ 01,-01;3) + OBW (Oupola’— 01,50.3)
+A0ka<01¢301,-— Olaanr) =0

The rate of divergence for the unstable values of C,, and
C,, (for the specific case to which fig. 2 pertains) is indicated
by the lines of equal roots in figure 3. Although these lines
appear to go through the origin, each has its intercept at a
positive value of Ch; proportional to the value of the root.
For small values of the root, however, the intercepted dis-
tance is negligible, and the loci may be considered lines of

Ch,
constant floating ratio £=——C,; - Figure 3 shows that the
. 5

divergence over most of the range of negative Cy; is very
slow. This divergence is, in fact, the so-called ‘“spiral
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instability” that is generally anticipated by airplane de-
signers. In the fourth quadrant, however, 2 sudden rapid
increase in the rate of divergence is observed, which corre-
sponds to a change of sign in the coefficient of A in the stability
cquation. From the practical point of view the floating
ratio at which this sudden increase occurs locates the
significant ‘“divergence boundary.” A line through this
region and the oscillatory stability boundary may therefore
be considered the complete boundary for stability of the
airplane with all four degrees of freedom.

Equations for two degrees of freedom.—The information
obtained from calculations neglecting the yawing and side-
elipping motions will now be considered. The equations of
motion simplified to include only coupling between rolling
and aileron motion are as follows (nondimensional form):

@IzD—C,)D¢— (Cip,, D+ Ci)6=0
(—¢D—Chp ) Do+ (2I,,D2—C',,D,D——0,,)8=0} ©®
and the stability equation is
4TI N2 (0,,me+ O 1. u+% Osz)k’
+(Ct,Cps—2ChIx— CiyCrpy— Crif) M

+ (01,055—' C’,,O’,,M) = 0 (7)
5 ; — , ~
Oscillatory stability | ~N|~——0scillatory
.\ boundary (—“’7 mode uns}le\\(
\ N
) , SIS
\ I ™~ N ~
\ One
osci//ofory_ . [ \
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.3t ! \1\\ ™~
\\ N \\\
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F1G0ORE 4—Character and stability of the components of the motions with coupling only
between alleron movements and rolling angle. Alleron chord, 15-percent afrfoil chard;
Em0: Ja=0.
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Nature of the motions, two degrees of freedom.—For the
case defined by tables I and II, the motions are as described
in figure 4. The stability equation is & cubic, and there is
again one real root, which becomes zero at the divergence
boundary. The remaining two roots form a complex pair,
indicating an oscillatory mode, inside the region defined by
the long-dashed curve. Outside this region all three roots
are real and no oscillations ocecur. The oscillations become
unstable at a small positive value of Cy,;, which is almost
independent of the value of C,_.

Comparison of results, two and four degrees of freedom.—
The results of the two computations can now be tested for
agreement. Comparison of figures 2, 3, and 4 suggests that
the effective divergence boundary of the cross-coupled
motions (shown by the dotted line in fig. 2) may be assumed
to coincide with the true divergence boundary in the simpli-
fied case. Thus, where the simplified analysis indicates a
change from stability to instability, there is actually a
sudden transition from a slow divergence to a rapid one.
The comparison may be extended into the first quadrant of
the charts. Here the divergence boundary appears, in the
more exact analysis, as a branch of the boundary between
damped and undamped oscillations (line 0A, fig. 2). The
oscillations are;, however, on the point of breaking down
into aperiodic modes and the instability would in practice
be indistinguishable from uniform divergence. In accord-
ance with these observations the line of zero roots obtained
from the simplified analysis will be termed the ““divergence
boundary,” with the understanding that such a designation
is strictly true only when the cross-coupling is negligible.

Further comparison of figures 2 and 4 shows that the
oscillatory stability boundary of the simplified treatment,
although shifted sligchtly by the introduction of the addi-
tional degrees of freedom, is so little altered that it also may
be retained as part of the stability boundary. Moreover,
the position of the line enclosing the oscillatory region
remains essentially unchanged and still indicates the values
of the hinge moments at which one oscillation breaks down.
It may therefore be concluded that, except for the presence
everywhere of an additional mode of oscillation to be dis-
cussed subsequently, the broad aspects of the solution for
the more complex case may be deduced from the results of
the simplified analysis.

Comparison of the roots at a number of points shows that
the results of the two calculations are in close quantitative
agreement, also, with regard to the oscillatory mode com-
mon to both analyses. Thus, both the period and the damp-
ing of the oscillations of one mode can be obtained from the
results of the simplified analysis.

The oscillations of the second mode have both damping
and period virtually independent of the hinge moments of
the ailerons. In the case chosen for illustration the period
is of the order of 30 semispans, or, if the span is 40 feet and
the wing loading 40 pounds per square foot, about 3%
seconds, throughout the range of (', with C}, negative; the

motion damps to half amplitude in the course of one oscilla-
tion. Because the aileron characteristics are not involved
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and because of the magnitudes of the period and damping,
this mode appears to be the normal lateral oscillation of the
airplane with controls fixed and as such is treated elsewhere
in the literature. For the assumed airplane this mode does
not become unstable anywhere within the region indicated
as stable by the simplified analysis.

Effect of aileron moment of inertia on cross-coupling.—It
seems desirable to check the foregoing conclusion against
results obtained with the moment of inertia of the aileron
system retained in the equations. For this purpose, the
roots of the stability equations have been calculated at
Cy.=0.15 and C,=0.02,—0.1, —0.2, and —0.3, with 7,=0.025.

With four degrees of freedom, the stability equation has six -

roots. Of these, one root indicates the spiral mode and, in
the unstable region, has the same values as are given by
figure 3 for the case with zero moment of inertia. A second
real root corresponds to the real root of the simplified equa-~
tion. The four remaining roots form, in general, two oscil-
latory pairs. These roots are compared with those of the
simplified equation in the following table:

G, Two degreesoffree-|  pour degrees of freedom, To=0.025

dom, I,=0.025
0.02 ~0. 00370, 181 —0. 22 0246-0. 1101
-1 —1.043 & .843! —1.053 =+ .851 —. 0258k . 1
-2 —1.077 1. 6621 —~L081 =L 8641 —. 02454 . 1991
-3 —1.086 2. 1861 —1.083 :2.188i —.0241% .1981

At C,,=0.02, where the periods are of the same order of
magnitude, the effect of the cross-coupling is seen. Else-
where the period and damping in both calculations agree
within 1 percent. It appears reasonable to conclude that
the statements of the preceding section hold in spite of the
omission of the aileron moment of inertia from the calcula-
tions.
SIMPLIFIED ANALYSIS

Using the reduced form of the stability equation makes it
possible to investigate the effects on the stability of the air-
plane of varying the aileron characteristics, and even to give
certain general formulas. Because most modern airplanes
are designed with ailerons completely mass balanced, these
formulas may be still further simplified by assuming ¢ equal
to zero.

Aileron-free oscillations,—The oscillations associated
with freeing the aileron controls can now be investigated in
more detail. If a pair of roots is assumed in the form
M=—atni, a relation can be derived giving the frequency
n in terms of the coefficients of A in equation (7). This
relation is too lengthy to be presented in its general form;
however, calculations have been made from it and the re-
sults will be shown in the form of lines of equal period
P=2x/n on the stability charts.

The damping of the oscillations is more readily expressible
than is the period, particularly if a fixed value of the fre-
quency is assumed. Moreover, calculations of the damping
for zero frequency and for the highest frequency likely to be
encountered in practice showed that the expression could be

843110—50——18
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gtill further simplified by omitting the terms containing the
frequency and C,, (gince these terms apparently canceled

each other) without any appreciable loss in accuracy. Thus,
with £ equal to zero, the damping a is, to a good approxima-
tion, the smaller root of the quadratic

3a2+<%?+ ) 0‘1’0"06 On)_

— |=0 ®
which is independent of C,,.

a4l I, ~ 2T,
At the stability boundary, the damping a is zero, and,
therefore,

C.C
Chy= 2o 9)
21x
approximately.
. The more accurate expression for this boundary is obtained
by setting Routh’s discriminant equal to zero. The result
is & linear relation between Ci; and G, ; that is,
Ci,
0}:3:@ (Ohme'l‘ OlpIa)
(g’ 0"D601DBIX+2016I IX—I—C’;,O',DJ 0 10
U b_2> 2 Ix OkDB 7% ( )

Figure 4, however, shows the variation with O, to be
actually quite small.

Stick-force criterion.—The divergence boundary is ob-
tained by setting the constant term of the stability equation

equal to zero; then,
Ve
(%

This condition for neutral stability is identical with the
equation for zero slope of the hinge-moment curve:

and is therefore also identified with the condition for zero
stick force in pure roll or in a rapid rolling maneuver. Inas-

much as the stick force per unit deflection of the ailerons is

(11)

(12)

proportional to d—dcg'% lines of constant stick force are obtained

by replacing the zero in equation (12) by appropriate con-
stants. The rolling effectiveness, dﬁd) _nb v per unit aileron
deflection, is independent of the hinge moments, the equation
for constant stick force therefore results in a family of
straight lines parallel to the divergence boundary of equa-
tion (11) and the criterion for light stick force for given
aileron dimensions and effectiveness is the closeness with
which that boundary is approached. A comparison of one
aileron with another, however, shows that the stick force
will also be proportional to the value of ¢,%..

Method of investigating the effect of friction..—When the
effect of friction in the control system is considered, it is
necessary to distinguish between two types, viscous friction
and solid friction. Viscous friction, which varies with the
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speed of the flap deflection, is exactly equivalent to an in-
crease in G, heretofore considered to be due only to the
aerodynamic damping of the ailerons. Solid friction acts in
a more complex way but may be approximated by an
equivalent viscous damping, the amount varying inversely
with the amplitude of the deflection. (A more detailed dis-
cussion of this approximation is given in reference 7.)
Thus, in the course of a damped oscillation, for example,
the apparent C,,, increases and the question of the effect
of the friction reduces to the question of whether an increase

in C,,, is stabilizing or destabilizing.

EXPLANATION OF CHARTS

The stability charts (figs. 5 to 9) are intended both as
illustrations of the application of the preceding formules
and as working charts from which the behavior of & particular
set of ailerons on a conventional airplane may be predicted.
If the analysis is to be applied to an airplane having stability
characteristics that represent a considerable departure from

-6 | R
Stavle l \]?vafab/e\\
oscillations ~ ,osdllaﬁms

L -

I
, [
| i\
\\\ \20//
\| ]
N
T =

: [N
/

%*w‘/’ .ZOLL\

»

wila

[V
YA/ LYY

/
(VA

Vaiva

\\\

Q
[ —
/

yauin
/

v

/

//

ﬁa
—
A

/7
3

VAN LS

/gg
g

/T AL

/

i
/

\ ey

-/ Diver'gonce' N \\\\
| e y~~{J§a\\ \\\2\\

G.

FIGURE §—Stability boundarles, lines of equal period, and lines of equal stick foree for 15-
percent-chord allerons.  £=0; T=0. Period P is In wing semispans.

REPORT NO. 787—NATIONAL ADVISORY COMMITTEE FOR AERRONAUTICS

< those tabulated herein, it will probably be advisable to

calculate the nature of the motions from the general formulas
(equations (7), (8), (10), and (11)).

Figures 5 to 9 show the oscillatory regions and lines of
equal period in those regions, as well as the stability bound-
aries for aileron-free motion. (The damping of the oscilla-
tions is shown separately in fig. 10.) Figures 5, 6, and 7
ghow the results for 15-percent-chord ailerons with three
different moments of inertia covering a wide range of values.
In all other respects the ailerons are those previously used
as a basis for the preliminary calculations. The airplane
characteristics are those given in table I. Figures 8 and 9
present stability regions for 30-percent-chord ailerons of the
same effectiveness C;, as the 15-percent-chord ailerons of
figures 5, 6, and 7. The span for the wider ailerons would
be 28 percent of the wing span, as against 40 percent for the
narrower ones. 'The other characteristics of the 30-percent-
chord ailerons are listed in table II. Two values of I, are
presented for comparison. The airplane characteristics are
not changed from those of table I.
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In figures 5 to 9, the value used for the aerodynamic
damping of the aileron motion C,p, is the theoretical value
for unbalanced flaps (fig. 1). The value of Cy,, actually
varies with the amount of balance and is therefore not con-
stant for any one chart. Moreover, the variation depends
on the manner in which the balance is obtained. The varia-
tion is, however, slight in any case—less, for example, than
the amount introduced by friction. (If balancing area is
added ahead of the hinge, complete balance involves approxi-
mately 15 percent reduction in Cjp, from the theoretical
value.) The variation of C;,, with Oy, and C,,, therefore,
need not be incorporated into the charts. The effect of a
change in C,,, may be estimated by a comparison of figure 5
with figure 8, and of figure 6 with figure 9, inasmuch as the
principal difference between the calculations for the narrow-
and wide-chord ailerons of the same effectiveness is an
increase in G, ;.

The relative magnitudes of the stick forces for the narrow-
and wide-chord ailerons are indicated by the spacing of the
lines of equal stick force in figures 5 and 8. The hinge
moments are expressed in these figures in terms of the mean
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wing chord in order to make possible a direct comparison of
actual forces. As previously noted, all the lines are parallel

to the line of zero stick force, that is, to the divergence

boundary.

Figure 10 shows the distance required for the oscillations
to damp to one-half amplitude. This distance iz 0.693/a,
where ¢ is given by equation (8). A single value of I, was
selected, and the distance to damp to one-half amplitude
was plotted against (), for several values of Ch,,. The
figure was designed primarily to serve as the basis for the
discussion of the effect of friction and is, therefore, more
general than the preceding charts. The damping for 15-
percent-chord ailerons without friction is also shown, how-
ever (to be applied to fig. 6), and the damping for 30-percent-
chord ailerons, I,=0.025 (to be used with fig. 9), may be
understood to coincide with the line for Chp;=—0.2. The
inclusion of lines for other values of I, would not affect the
conclusions to be drawn from the figure.

In figure 11 the stability boundaries are shown in the same
form as in figures 5 to 9 for values of ¢ varying from complete
balance (¢=0) to a value roughly corresponding to that for
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an aileron with center of gravity 20 percent of its chord
behind the hinge ((=-—0.6). From equation (7) it can be
seen that £ does not enter into the stick-force criterion.
Routh’s discriminant, however, is derivable as an essentially
linear relation between Cy, and ¢, Although the boundaries
shown are for 1,=0.0125, they are practically invariant with
the moment of inertia. The effects of increasing the damp-
ing of the ailerons or C,,, and of changing £ are substantially
additive, neither change affecting the variation of critical
Ch, with the other variable. It may be generally concluded
from figure 11, therefore, that the presence of unbalanced
mass behind the aileron hinge restricts the permissible degree
of aerodynamic balance.

DISCUSSION OF RESULTS
OSCILLATORY MODES

Oscillatory regions.—It may be seen from the figures that
in all cases rolling oscillations (in addition to the normal
lateral mode) will follow a disturbance if Cj, is small and
C», 1s positive. From figures 8 and 9 it may be concluded
that the range of Cy; for which oscillations are possible in-
creases with the width of the ailerons. As previously sug-
gested, figures 8 and 9 may also be understood to indicate
the increase in the extent of the oscillatory region with
increased C,,; due to any other cause.
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Effect of I,.—Comparison of figures 5, 6, and 7 and of
figures 8 and 9 shows that the moment of inertia of the
ailerons introduces a second oscillatory region. On further
investigation, the oscillations in this region are found to be
very rapid but well damped. Both damping and period
depend almost entirely on the tendency of the ailerons to
resist deflection, as expressed by Ch;, Chp,, and the moment
of inertia I,. (See section entitled “Effect of aileron moment
of inertia on cross-coupling” for values of the roots in this
region.) The motion is therefore interpreted as a flapping
movement of the ailerons uncoupled with the motion of the
airplane. This mode is so well damped (maximum distance
to damp to half amplitude=0.63 semispan in the range con-
sidered) as to be of no practical importance and further
discussion will therefore be limited to the rolling oscillations
occurring in the neighborhood of C,=0.

Period of the aileron-free rolling oscillations.—The period
of the rolling oscillations depends to a large extent on the
floating tendency of the ailerons. When C,,=0.4, for ex-
ample, the period for narrow ailerons may be of the order of
15 semispans, or, if the airplane is traveling at 400 feet per
gsecond and has a 40-foot wing span, three-quarters of a
second. In the case of wider ailerons or of ailerons with
smaller positive floating tendency, the period is considerably
longer,

DAMPING OF OSCILLATIONS

It is perhaps preferable to consider the period in conjunc-
tion with the damping of the oscillations. The distance
required for the oscillations to damp to half amplitude is
shown in figure 10. Application of figure 10 to the preceding
figures indicates that, so long as Gy, is negative, the motion
damps to half amplitude in a fraction of an oscillation. If
the ratio Ch,/Chps is in the neighborhood of 0.3 or greater,
the ratio of period to damping distance is so large as to make
the motion in effect 2 uniform subsidence.

Effect of airplane characteristics.—It should be re-
membered that the preceding conclusions are based on
computations for a particular airplane and are not quanti-
tatively applicable in general. If the ratio of damping in
roll to moment of inertia in roll €y, /Ix is numerically greater
than the value of —0.4 assumed for the example, the damping
of the oscillations will be more rapid than is shown by figure 10.
In addition, the boundary will be shifted to the right, with
the amount of positive C,, allowed increased proportionately
to the increase in C, /Iy (equation (9)).

With the exception of the considerable effect of unbalanced
mass, shown in figure 11, no factors other than those just
discussed enter critically into the damping or stability of the
oscillatory mode. The effect of variations in floating tend-
ency can be seen in figures 5 to 9, where lines of equal
damping would be very nearly parallel to the oscillatory
stability boundaries. The parameter Cy, the aileron effect-
iveness, enters into the expression for the stability boundary
(equation (10)) in combination with C,, and has similarly
little influence on it. (It may be noted here that the
period of the oscillation is also affected by a change in Oy in
roughly the same way as by a proportionate change in
Ch,.) The moment of inertia of the ailerons appears in
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equation (8) for the damping, acting to reduce the time
required for damping to half amplitude. The effect of
I, on the position of the boundary (zero damping) is, how-
ever, negligible, as may be seen by comparing figures 5, 6,
and 7, and figures 8 and 9.

EFFECT OF FRICTION

The effect of viscous friction in the control system, as has
been noted, is merely to augment the resistance to the aileron
motion as expressed by C,p,. The result may be seen in
the charts for increased aileron chord (figs. 8 and 9). Oscil-
lations occur over a wider range of Gy, than with a frictionless
system. Also (from fig. 10) the rate of damping is generally
lower, when C, is negative, because of the phase lag between
8 and Ds; however, if C,, is positive, the additional damping
will retard the motion and extend the range of stable C,,.

If solid friction is present, the effective value of C,,, will
gradually increase as the oscillations die down—according
to the approximate theory, approaching infinity as the
amplitude approaches zero, but in actual practice causing
the ailerons to stick at some small angle of deflection.
While this change in effective C,,, is taking place, the rate
of damping will slowly decrease or increase, accordingly as
C;; 18 negative or positive, and will approach the rate cor-
responding to the ailerons-fixed condition, as shown by
figure 10. In no case will oscillations of increasing amplitude
occur because of the presence of friction if the ailerons are
otherwise stable. Moreover, because the damping ap-
proaches a finite (nonzero) rate, there is no possibility of
steady oscillations, such as occur in the rudder-free condition
(reference 7).

CONCLUSIONS

1. The stability of an airplane with ailerons free may be
determined to a very large extent without regard to the
cross-coupling between the rolling motion and the yawing
and sideslipping motions. Neglecting the yawing and side-
slipping leads to a simplified analysis that does not predict
the occurrence of spiral instability. The simplified analysis
does, however, predict the values of the hinge moments at
which the instability becomes violent. Also, the simplified
analysis will not ineclude the normal lateral oscillation of the
airplane with controls fixed, but the stability of this mode is
not affected by freeing the ailerons and that phase of the
problem is outside the scope of the present investigation.

2. Divergence, or an unstable variation of the control
force with aileron deflection, is the only form of instability
likely to occur in the case of mass-balanced ailerons with
negative floating tendency, except for flutter, which is not
considered in this analysis. The use of ailerons with con-
siderable tendency to float against the wind, however,
introduces the possibility of oscillatory motion with the
ailerons free and, if the ailerons are aerodynamically over-
balanced, of oscillatory instability., The unstable oscilla-
tions exist in addition to the normal rolling-yawing oscilla-
tions introduced by the dihedral angle and by the directional
stability of the airplane.

3. As long as the restoring moment is not completely
balanced out, the damping of the aileron-free oscillations in
8 mass-balanced system is so great as to make the oscillations
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appear to be of no practical concern. The presence of un-
balanced mass behind the hinge, however, restricts somewhat
the permissible degree of aerodynamic balance.

4. Comparison of the 15-percent-chord and 30-percent-
chord ailerons shows that aerodynamic overbalance is per-
missible, from considerations of stabilify, in the case of
shorter, wider-chord ailerons if considerable positive floating
tendency is present. The permitted increase in aerodynamic
balance is not enough, however, to offset the rapid increase
in stick force with aileron chord. On the other hand, the
oscillations are of considerably lower frequency for wide
ailerons than are those that oceur at the same stick foree in
the case of narrower ailerons.

5. The presence of viscous friction in the control system
has the same effect as increasing the aerodynamic damping
of the ailerons. The presence of solid friction in an other-
wise stable system has the effect of gradually increasing or
decreasing the damping of the oscillations as their amplitude
decreases 8o as to cause the rate of damping with ailerons
free to approach the rate with ailerons fixed. Neither
instability nor steady oscillations will result from the presence
of friction.

6. The stability of the control-free oscillations is virtually
independent of the moment of inertia, floating tendency, or
cffectiveness of the ailerons.

7. An airplane with a large ratio of damping in roll to
moment of inertia ahout the X-axis permits a closer degree
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of balance in the ailerons before oscillatory instability is
incurred and, with ailerons free, such an airplane is gen-
erally more stable than one for which this ratio is small.

LaNGLBEY MEMORIAL AERONAUTICAL LLABORATORY,
NarionanL Apvisory COMMITTEE FOR AERONAUTICS,
Lanarey Fieup, Va., November 19, 1943.
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